
x86 Assembly Programming

Lesson 1 – Data Representation

Ludvik Jerabek

Binary to Decimal

Digit Position 7 6 5 4 3 2 1 0 Total

Base 10 (10^n) 10^7 10^6 10^5 10^4 10^3 10^2 10^1 10^0 -

Base 10 n’s place 10,000,000’s 1,000,000’s 100,000’s 10,000’s 1,000’s 100’s 10’s 1’s -

Decimal Number
Position Values

53,125,101

5*(10^7) 3*(10^6) 1*(10^5) 2*(10^4) 5*(10^3) 1*(10^2) 0*(10^1) 1*(10^0) 53,125,101

53,125,101
Add Position Values

50,000,000 3,000,000 100,000 20,000 5,000 100 0 1 53,125,101

Base 2 (2^n) 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0 -

Base 2 n’s place 128’s 64’s 32’s 16’s 8’s 4’s 2’s 1’s -

Binary Number
Position Values

10101101

1*(2^7) 0*(2^6) 1*(2^5) 0*(2^4) 1*(2^3) 1*(2^2) 1*(2^1) 1*(2^0) 175

10101100 = 175
Add Position Values

128 0 32 0 8 4 2 1 175

Base 2 (binary) numbers are represented using the digits 0 and 1. Binary numbers are like Base 10 (decimal)
numbers except that the positions from (right to left) increase by powers of 2, instead of powers of 10. Decimal
numbers have a 1’s place, 10’s place, 100’s place, 1000’s place, 10000’s place, and so on increasing in powers of
10. Decimal number place values are calculated via 10^n starting at n=0 (far right). Similarly binary place values
are calculated 2^n starting at n=0 (far right). Decimal numbers unlike binary can have more digits 0-9 in each place
eg. 9 in the 10’s place is 90 or 9*(10^1). Thus digit*(base^digit_position) = value. All place values are then added
together to assemble the final decimal number. Eg. 10101101 = 128 + 32 + 8 + 4 + 2 + 1 = 175 see below:

Lesson 1 - Data Representation 2

Binary and Hexadecimal Numbers
• Base 2 – Binary Numbers eg. 11110001

– Binary numbers are long and hard to read so
hexadecimal (hex) numbers are used to represent
binary numbers in a more readable format. A byte is 8
bits, a nibble is 4 bits, and each bit is a binary 1 or 0.

• Base 16 – Hexadecimal Numbers eg. 0xF1
– Hex numbers range from 0-9 followed by A-F

representing 10-15 respectively. Every two hex digits
represent a byte of data eg. 0xFF is equal to an
unsigned decimal value 255. A single hex digit
represents a nibble (half byte or 4 bits). Thus hex 0-F
can be represented in binary as 0000-1111 or decimal
as 0-15. This will come in very handy.

 Lesson 1 - Data Representation 3

Decimal, Hex, and Binary
Decimal Hex Binary (Nibble)

0 0 0000

1 1 0001

2 2 0010

3 3 0011
4 4 0100

5 5 0101

6 6 0110
7 7 0111

8 8 1000

9 9 1001

10 A 1010
11 B 1011

12 C 1100

13 D 1101

14 E 1110
15 F 1111

To prevent confusion with decimal numbers hex numbers should be prepended with 0x

Lesson 1 - Data Representation 4

Converting Binary to Hex

• Take a long binary number and break it apart
at each nibble starting on the right to the left.

(16 bits, 2 bytes) 1011010010110101

(Split into nibbles) 1011 0100 1011 0101

(Nibbles to Hex) B 4 B 5

(Final Hex Number) 0xB4B5

Lesson 1 - Data Representation 5

Converting Binary to Hex

• Take each hex digit and replace them using the
hex to binary table on (slide 3).

(Hex) 0xABCD
(Lookup A) 1010 = A
(Lookup B) 1011 = B
(Lookup C) 1100 = C
(Lookup D) 1101 = D
 A B C D
(Replace ABCD) 1010 1011 1100 1101
(Binary) 1010101111001101

Lesson 1 - Data Representation 6

Converting Hex to Binary

• It is possible that you may not have a binary
number which consists of a perfect 4 bits or
nibble.

(3bits) 101

(Hex) 0x5

(14 bits) 11010010110101

(Split into nibbles) 11 0100 1011 0101

(Hex) 3 4 B 5

(Final Hex Number) 0x34B5

Lesson 1 - Data Representation 7

Converting Decimal to Base N

• Divide decimal number by Base, get the quotient
and remainder.
– Remainder is the next digit (right to left)

– Quotient is the next decimal for division

– Do until decimal number is 0

• Decimal 254 to Base 16 example:
254 ÷ 16 = Quotient = 15, Remainder = 14 = 0xE

Right most number E

15 ÷ 16 = Quotient = 0 , Remainder = 15 = 0xF

0xFE = 254

Lesson 1 - Data Representation 8

Converting Decimal to Base N

• Decimal 64 to Base 2 example:
64 ÷ 2 = Quotient = 32, Remainder = 0 Right most

32 ÷ 2 = Quotient = 16 , Remainder = 0

16 ÷ 2 = Quotient = 8 , Remainder = 0

8 ÷ 2 = Quotient = 4 , Remainder = 0

4 ÷ 2 = Quotient = 2 , Remainder = 0

2 ÷ 2 = Quotient = 1 , Remainder = 0

1 ÷ 2 = Quotient = 0 , Remainder = 1 Left most

(Binary) 1000000

Lesson 1 - Data Representation 9

Number Conversion Tools
• Windows Calculator in Programming Mode

– Enter number in decimal mode then toggle mode
to Hex, Oct, or Bin.

Lesson 1 - Data Representation 10

Character Codes - ASCII

• Letters, numbers, punctuation
marks, and special symbols are
numeric values which result in
the associated character being
displayed.

• This character set is known as
the ASCII character set.

• The ASCII system uses 7 bits to
represent decimal 0-127 or hex
0x00-0x7F

Lesson 1 - Data Representation 11

Character Codes – Ext. ASCII

• Additionally there are several versions of
the extended ASCII characters decimal 128-
255 or hex 0x80-0xFF.

• The 8 bit limitation for ASCII characters lead
to the creation of 16 bit characters called
Unicode.

• Unicode provides 65535 different
characters in order to support different
languages eg. Chinese.

• The first 128 characters of Unicode are
comprised of the ASCII character set except
in 16 bits eg. 0x0000-0x007F

Lesson 1 - Data Representation 12

Example of ASCII Strings

• Using the ASCII table on page 11 we can find the hex numbers for a string.
– This is fun!
– 0x54 = T
– 0x68 = h
– 0x69 = i
– 0x73 = s
– 0x20 = <space>
– 0x69 = i
– 0x73 = s
– 0x20 = <space>
– 0x66 = f
– 0x75 = u
– 0x6E = n
– 0x21 = !

• So in hex 0x54 0x68 0x69 0x73 0x20 0x69 0x73 0x20 0x66 0x75 0x6E 0x21

Lesson 1 - Data Representation 13

Try it!
Try your best to do it manually

Decimal Hex Binary ASCII

NULL

?

Z

d

100

1000101

1010

111101010010

0xFFFF

0x10

0x16

0x7C8

100

256

4253

19200

Lesson 1 - Data Representation 14

Adding and Subtracting in Binary

• Same as decimal; if sum of digits in a given
position exceeds the base (10 for decimal, 2
for binary) then there is a carry into the next
higher position

 1

3 9

+ 3 5

7 4

1 1 1 1

0 0 0 0 1 0 1 1

+ 0 0 0 0 0 1 0 1

0 0 0 1 0 0 0 0

Lesson 1 - Data Representation 15

Overflow Rules

Carry into sign bit? Carry out of sign bit? Overflow?

No No No

Carry Out Sign Bit

0 0 0 0 1 0 1 0

+ 0 0 0 0 0 1 0 1

0 0 0 0 1 1 1 1

Overflow can only happen when "adding" two numbers of the same sign
and getting a different sign. So, to detect overflow we don't care about
any bits except the sign bits. Ignore the other bits.

Lesson 1 - Data Representation 16

Overflow Rules

Carry into sign bit? Carry out of sign bit? Overflow?

No Yes Yes

Carry Out Sign Bit

1

1 0 0 0 1 0 1 0

+ 1 0 0 0 0 1 0 1

1 0 0 0 0 1 1 1 1

Overflow can only happen when "adding" two numbers of the same sign
and getting a different sign. In the case below we add two negative
numbers (both have 1 in the sign bit position) and it results in a positive
result 00001111.

Lesson 1 - Data Representation 17

Overflow Rules

Carry into sign bit? Carry out of sign bit? Overflow?

Yes No Yes

Carry Out Sign Bit

1

0 1 0 0 1 0 1 0

+ 0 1 0 0 0 1 0 1

1 0 0 0 1 1 1 1

Overflow can only happen when "adding" two numbers of the same sign
and getting a different sign. In the case below both numbers are positive
and result in a carry into the sign bit changing the sign of the value from
positive to negative.

Lesson 1 - Data Representation 18

Overflow Rules

Carry into sign bit? Carry out of sign bit? Overflow?

Yes Yes No

Carry Out Sign Bit

1 1

0 1 0 0 1 0 1 0

+ 1 1 0 0 0 1 0 1

1 0 0 0 0 1 1 1 1

Overflow can only happen when "adding" two numbers of the same sign
and getting a different sign. In this case the top number is a positive
number and the bottom is a negative number. This means there will not
be overflow since overflow can only occur if both numbers are of the
same sign.

Lesson 1 - Data Representation 19

Bitwise - NOT(¬)

• Truth table for NOT(¬) logic

A ¬A

0 1

1 0

Lesson 1 - Data Representation 20

Bitwise - AND(^)

• Truth table for AND(^) logic

– A ^ B is 1 if both A and B are 1

A B A^B

0 0 0

1 0 0

0 1 0

1 1 1

Lesson 1 - Data Representation 21

Bitwise - OR(v)

• Truth table for OR(v) logic

– A v B is 1 if either A or B is 1

A B AvB

0 0 0

1 0 1

0 1 1

1 1 1

Lesson 1 - Data Representation 22

Bitwise - XOR(⊕)

• Truth table for XOR(⊕) logic

– Sometimes called add without a carry

A B A⊕B

0 0 0

1 0 1

0 1 1

1 1 0

Lesson 1 - Data Representation 23

More Bitwise Fun

1 1 1 0 0 0 0 1

^ 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 1

v 0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 1

1 1 1 0 0 0 0 1

⊕ 0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0

AND(^) of two binary numbers

OR(v) of two binary numbers

XOR(⊕) of two binary numbers

Lesson 1 - Data Representation 24

1’s Complement or Logical NOT

• 1’s Complement is also known as a bit
complement or a logical not. Take every bit
and write the opposite bit. The character ¬
denotes a logical NOT.

¬ 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

Lesson 1 - Data Representation 25

Signed and Unsigned Numbers

• How do we represent negative numbers on a computer system?
• We could try ASCII and store each number as ASCII in memory and

use “–” to designate it as negative eg: -123
• This would require 4 bytes to store. Thus it would require 32 bits of

data to represent a number that is not even a byte in size,
remember 1 byte (8bits) can represent 0-255 in decimal.

• ASCII number representation would be inefficient in two ways
– It wastes space
– Difficult to manipulate add, subtract, multiply, divide since it

essentially is a string and not a number.

• This means there needs to be a better and more efficient way to
deal with signed and unsigned numbers.
– The 2’s complement system is the answer

Lesson 1 - Data Representation 26

2’s Complement System

• In the system numbers are of a fixed length

– BYTE (8bits)

– WORD (16bits)

– DWORD (32bits)

– QWORD (64bits)

• Positive numbers most significant bit is 0

– MAX BYTE = 01111111 = 127

• Negative numbers most significant bit is 1

– MAX NEG BYTE = 10000000 = -128

Lesson 1 - Data Representation 27

Calculating the 2’s Complement

• Let’s say you want to calculate -30 start with positive 30 in binary 8 (bits)

• 11100010 is the twos complement of 30 and it’s value is -30.
• Note the unsigned value of 11100010 is decimal 226 so it’s not possible to

simple get the decimal value of the binary. In order to determine the value
of the negative number a 2’s complement must be done.

1 1 1 0 0 0 0 1

+ 0 0 0 0 0 0 0 1

1 1 1 0 0 0 1 0

¬ 0 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1

Logical NOT (¬) the number 30 = 00011110

-31 or unsigned decimal 225 = 11100001

-31 or unsigned decimal 225 = 11100001

Add 1

2’s Complement of 30 is unsigned 226 or -30

Lesson 1 - Data Representation 28

Calculating the 2’s Complement

• In order to determine what a negative number is you
must take the 2’s complement

• So in order to determine the value of a negative
number use twos complement

0 0 0 1 1 1 0 1

+ 0 0 0 0 0 0 0 1

0 0 0 1 1 1 1 0

¬ 1 1 1 0 0 0 1 0

0 0 0 1 1 1 0 1

-30 or unsigned 226 = 11100010

¬-30 or unsigned 226 = 00011101 = 29

29 = 00011101

Add 1

2’s Complement of -30 is 30

Lesson 1 - Data Representation 29

Floating Point Numbers
• Floating Point Numbers are stored in binary via IEEE 754

• IEEE 754 floating point numbers have three basic bit
groups: sign, exponent, and mantissa. The floating point
values are stored in 32bits and 64 bits. The below table
highlights the number of bits and position of the bits.

• The standard is outside of the scope of this document for more
information on the IEEE 754 please see:

http://en.wikipedia.org/wiki/IEEE_floating_point

Sign Exponent Fraction Bias

32 bit (Single Precision) 1 [31] 8 [30-23] 23 [22-00] 127

64 bit (Double Precision) 1 [63] 11 [62-52] 52 [51-00] 1023

Lesson 1 - Data Representation 30

http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point

Try it!
Try your best to do it manually

Solve Operation Binary Result

¬01010010 NOT(¬)

00000001●11111110 AND(●)

00000001+11111110 OR(+)

10101010⊕10101011 XOR(⊕)

-5 Using 2’s Complement

Lesson 1 - Data Representation 31

