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Binary to Decimal 

Digit Position 7 6 5 4 3 2 1 0 Total 

Base 10 (10^n) 10^7 10^6 10^5 10^4 10^3 10^2 10^1 10^0 - 

Base 10 n’s place 10,000,000’s 1,000,000’s 100,000’s 10,000’s 1,000’s 100’s 10’s 1’s - 

Decimal Number 
Position Values 

53,125,101 

5*(10^7) 3*(10^6) 1*(10^5) 2*(10^4) 5*(10^3) 1*(10^2) 0*(10^1) 1*(10^0) 53,125,101 

53,125,101 
Add Position Values 

50,000,000 3,000,000 100,000 20,000 5,000 100 0 1 53,125,101 
 

Base 2 (2^n) 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0 - 

Base 2 n’s place 128’s 64’s 32’s 16’s 8’s 4’s 2’s 1’s - 

Binary Number 
Position Values 

10101101 

1*(2^7) 0*(2^6) 1*(2^5) 0*(2^4) 1*(2^3) 1*(2^2) 1*(2^1) 1*(2^0) 175 

10101100 = 175 
Add Position Values 

128 0 32 0 8 4 2 1 175 

Base 2 (binary)  numbers are represented using the digits 0 and 1. Binary numbers are like Base 10 (decimal) 
numbers except that the positions from (right to left) increase by powers of 2, instead of powers of 10.  Decimal 
numbers have a 1’s place, 10’s place, 100’s place, 1000’s place, 10000’s place, and so on increasing in powers of 
10. Decimal number place values are calculated via 10^n starting at n=0 (far right). Similarly binary place values 
are calculated 2^n starting at n=0 (far right). Decimal numbers unlike binary can have more digits 0-9 in each place 
eg. 9 in the 10’s place is 90 or 9*(10^1). Thus digit*(base^digit_position) = value.  All place values are then added 
together to assemble the final decimal number. Eg. 10101101 = 128 + 32 + 8 + 4 + 2 + 1 = 175 see below: 
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Binary and Hexadecimal Numbers 
• Base 2 – Binary Numbers eg. 11110001 

– Binary numbers are long and hard to read so 
hexadecimal (hex) numbers are used to represent 
binary numbers in a more readable format. A byte is 8 
bits, a nibble is 4 bits, and each bit is a binary 1 or 0. 

• Base 16 – Hexadecimal Numbers eg. 0xF1 
– Hex numbers range from 0-9 followed by A-F 

representing 10-15 respectively. Every two hex digits 
represent a byte of data eg. 0xFF is equal to an 
unsigned decimal value 255. A single hex digit 
represents a nibble (half byte or 4 bits). Thus hex 0-F 
can be represented in binary as 0000-1111 or decimal 
as 0-15. This will come in very handy. 
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Decimal, Hex, and Binary 
Decimal Hex Binary (Nibble) 

0 0 0000 

1 1 0001 

2 2 0010 

3 3 0011 
4 4 0100 

5 5 0101 

6 6 0110 
7 7 0111 

8 8 1000 

9 9 1001 

10 A 1010 
11 B 1011 

12 C 1100 

13 D 1101 

14 E 1110 
15 F 1111 

To prevent confusion with decimal numbers hex numbers should be prepended with 0x 
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Converting Binary to Hex 

• Take a long binary number and break it apart 
at each nibble starting on the right to the left.  

 

(16 bits, 2 bytes)  1011010010110101 

(Split into nibbles) 1011 0100 1011 0101 

(Nibbles to Hex)      B       4        B        5 

(Final Hex Number) 0xB4B5 
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Converting Binary to Hex 

• Take each hex digit and replace them using the 
hex to binary table on (slide 3). 

(Hex)    0xABCD 
(Lookup A)   1010 = A 
(Lookup B)   1011 = B 
(Lookup C)   1100 = C 
(Lookup D)   1101 = D 
       A        B        C       D 
(Replace ABCD)  1010 1011 1100 1101 
(Binary)    1010101111001101 
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Converting Hex to Binary 

• It is possible that you may not have a binary 
number which consists of a perfect 4 bits or 
nibble.   

(3bits)   101 

(Hex)    0x5 

(14 bits)   11010010110101 

(Split into nibbles) 11 0100 1011 0101 

(Hex)     3       4        B        5 

(Final Hex Number) 0x34B5 
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Converting Decimal to Base N 

• Divide decimal number by Base, get the quotient 
and remainder. 
– Remainder is the next digit (right to left) 

– Quotient is the next decimal for division 

– Do until decimal number is 0 

• Decimal 254 to Base 16 example: 
254 ÷ 16 = Quotient = 15, Remainder = 14 = 0xE 

Right most number E  

15 ÷ 16 = Quotient = 0 , Remainder = 15 = 0xF 

0xFE = 254 
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Converting Decimal to Base N 

• Decimal 64 to Base 2 example: 
64 ÷ 2 = Quotient = 32, Remainder = 0 Right most 

32 ÷ 2 = Quotient = 16 , Remainder = 0 

16 ÷ 2 = Quotient = 8 , Remainder = 0 

8 ÷ 2 = Quotient = 4 , Remainder = 0 

4 ÷ 2 = Quotient = 2 , Remainder = 0 

2 ÷ 2 = Quotient = 1 , Remainder = 0 

1 ÷ 2 = Quotient = 0 , Remainder = 1 Left most 

(Binary) 1000000 
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Number Conversion Tools 
• Windows Calculator in Programming Mode 

– Enter number in decimal mode then toggle mode 
to  Hex, Oct, or Bin. 
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Character Codes - ASCII 

• Letters, numbers, punctuation 
marks, and special symbols are 
numeric values which result in 
the associated character being 
displayed. 

• This character set is known as 
the ASCII character set. 

• The ASCII system uses 7 bits to 
represent decimal 0-127 or hex 
0x00-0x7F 
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Character Codes – Ext. ASCII  

• Additionally there are several versions of 
the extended ASCII characters decimal 128-
255 or hex 0x80-0xFF. 

• The 8 bit limitation for ASCII characters lead 
to the creation of 16 bit characters called 
Unicode. 

• Unicode provides 65535 different 
characters in order to support different 
languages eg. Chinese.  

• The first 128 characters of Unicode are 
comprised of the ASCII character set except 
in 16 bits eg. 0x0000-0x007F 
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Example of ASCII Strings 

• Using the ASCII table on page 11 we can find the hex numbers for a string. 
– This is fun! 
– 0x54 = T 
– 0x68 = h 
– 0x69 = i 
– 0x73 = s 
– 0x20 = <space> 
– 0x69 = i 
– 0x73 = s 
– 0x20 = <space> 
– 0x66 = f 
– 0x75 = u 
– 0x6E = n 
– 0x21 = ! 

• So in hex 0x54 0x68 0x69 0x73 0x20 0x69 0x73 0x20 0x66 0x75 0x6E 0x21 
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Try it! 
Try your best to do it manually 

Decimal Hex Binary ASCII 

NULL 

? 

Z 

d 

100 

1000101 

1010 

111101010010 

0xFFFF 

0x10 

0x16 

0x7C8 

100 

256 

4253 

19200 
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Adding and Subtracting in Binary 

• Same as decimal; if sum of digits in a given 
position exceeds the base (10 for decimal, 2 
for binary) then there is a carry into the next 
higher position 

 1 

3 9 

+ 3 5 

7 4 

1 1 1 1 

0 0 0 0 1 0 1 1 

+ 0 0 0 0 0 1 0 1 

0 0 0 1 0 0 0 0 
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Overflow Rules 

Carry into sign bit? Carry out of sign bit? Overflow? 

No No No 

Carry Out Sign Bit 

0 0 0 0 1 0 1 0 

+ 0 0 0 0 0 1 0 1 

0 0 0 0 1 1 1 1 

Overflow can only happen when "adding" two numbers of the same sign 
and getting a different sign. So, to detect overflow we don't care about 
any bits except the sign bits. Ignore the other bits.  
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Overflow Rules 

Carry into sign bit? Carry out of sign bit? Overflow? 

No  Yes Yes 

Carry Out Sign Bit 

1 

1 0 0 0 1 0 1 0 

+ 1 0 0 0 0 1 0 1 

1 0 0 0 0 1 1 1 1 

Overflow can only happen when "adding" two numbers of the same sign 
and getting a different sign. In the case below we add two negative 
numbers ( both have 1 in the sign bit position ) and it results in a positive 
result 00001111. 
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Overflow Rules 

Carry into sign bit? Carry out of sign bit? Overflow? 

Yes No Yes 

Carry Out Sign Bit 

1 

0 1 0 0 1 0 1 0 

+ 0 1 0 0 0 1 0 1 

1 0 0 0 1 1 1 1 

Overflow can only happen when "adding" two numbers of the same sign 
and getting a different sign. In the case below both numbers are positive 
and result in a carry into the sign bit changing the sign of the value from 
positive to negative. 
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Overflow Rules 

Carry into sign bit? Carry out of sign bit? Overflow? 

Yes Yes No 

Carry Out Sign Bit 

1 1 

0 1 0 0 1 0 1 0 

+ 1 1 0 0 0 1 0 1 

1 0 0 0 0 1 1 1 1 

Overflow can only happen when "adding" two numbers of the same sign 
and getting a different sign. In this case the top number is a positive 
number and the bottom is a negative number. This means there will not 
be overflow since overflow can only occur if both numbers are of the 
same sign. 
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Bitwise - NOT(¬) 

• Truth table for NOT(¬) logic 

 

 

 

 

 

 

A ¬A 

0 1 

1 0 
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Bitwise - AND(^) 

• Truth table for AND(^) logic 

– A ^ B is 1 if both A and B are 1 

 

 

 

 

 

 

 

A B A^B 

0 0 0 

1 0 0 

0 1 0 

1 1 1 
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Bitwise - OR(v) 

• Truth table for OR(v) logic 

– A v B is 1 if either A or B is 1 

 

 

 

 

A B AvB 

0 0 0 

1 0 1 

0 1 1 

1 1 1 
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Bitwise - XOR(⊕) 

• Truth table for XOR(⊕) logic 

– Sometimes called add without a carry 

 

 

 

 

 

 

 

 

 

A B A⊕B 

0 0 0 

1 0 1 

0 1 1 

1 1 0 

Lesson 1 - Data Representation 23 



 

 

 

 

 

 

 

 

More Bitwise Fun 

1 1 1 0 0 0 0 1 

^ 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 

1 1 1 0 0 0 0 1 

v 0 0 0 0 0 0 0 1 

1 1 1 0 0 0 0 1 

1 1 1 0 0 0 0 1 

⊕ 0 0 0 0 0 0 0 1 

1 1 1 0 0 0 0 0 

AND(^) of two binary numbers 

OR(v) of two binary numbers 

XOR(⊕) of two binary numbers 
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1’s Complement or Logical NOT 

• 1’s Complement is also known as a bit 
complement or a logical not. Take every bit 
and write the opposite bit. The character ¬ 
denotes a logical NOT. 

¬ 1 0 1 0 1 0 1 0 

0 1 0 1 0 1 0 1 
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Signed and Unsigned Numbers 

• How do we represent negative numbers on a computer system? 
• We could try ASCII and store each number as ASCII in memory and 

use “–” to designate it as negative eg: -123 
• This would require 4 bytes to store. Thus it would require 32 bits of 

data to represent a number that is not even a byte in size, 
remember 1 byte (8bits) can represent 0-255 in decimal. 

• ASCII number representation would be inefficient in two ways 
– It wastes space 
– Difficult to manipulate add, subtract, multiply, divide since it 

essentially is a string and not a number. 

• This means there needs to be a better and more efficient way to 
deal with signed and unsigned numbers. 
– The 2’s complement system is the answer 
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2’s Complement System 

• In the system numbers are of a fixed length 

– BYTE (8bits) 

– WORD (16bits) 

– DWORD (32bits) 

– QWORD (64bits) 

• Positive numbers most significant bit is 0 

– MAX BYTE = 01111111 = 127 

• Negative numbers most significant bit is 1 

– MAX NEG BYTE = 10000000 = -128 
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Calculating the 2’s Complement 

• Let’s say you want to calculate -30 start with positive 30 in binary 8 (bits) 
 
 
 
 
 
 
 
 
 
 
• 11100010 is the twos complement of 30 and it’s value is -30. 
• Note the unsigned value of 11100010 is decimal 226 so it’s not possible to 

simple get the decimal value of the binary. In order to determine the value 
of the negative number a 2’s complement must be done.  

1 1 1 0 0 0 0 1 

+ 0 0 0 0 0 0 0 1 

1 1 1 0 0 0 1 0 

¬ 0 0 0 1 1 1 1 0 

1 1 1 0 0 0 0 1 

Logical NOT (¬) the number 30 = 00011110 

-31 or unsigned decimal 225 = 11100001 

-31 or unsigned decimal 225 = 11100001 

Add 1 

2’s Complement of 30 is unsigned 226 or -30  
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Calculating the 2’s Complement 

• In order to determine what a negative number is you 
must take the 2’s complement 
 
 
 
 
 
 
 
 

• So in order to determine the value of a negative 
number use twos complement 

0 0 0 1 1 1 0 1 

+ 0 0 0 0 0 0 0 1 

0 0 0 1 1 1 1 0 

¬ 1 1 1 0 0 0 1 0 

0 0 0 1 1 1 0 1 

-30 or unsigned 226 = 11100010 

¬-30 or unsigned 226 = 00011101 = 29 

29 = 00011101 

Add 1 

2’s Complement of -30 is 30 
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Floating Point Numbers 
• Floating Point Numbers are stored in binary via IEEE 754 

• IEEE 754 floating point numbers have three basic bit 
groups: sign, exponent, and mantissa. The floating point 
values are stored in 32bits and 64 bits. The below table 
highlights the number of bits and position of the bits. 

 

 

 

• The standard is outside of the scope of this document for more 
information on the IEEE 754 please see: 

http://en.wikipedia.org/wiki/IEEE_floating_point 

 

 

Sign Exponent Fraction Bias 

32 bit (Single Precision) 1 [31] 8 [30-23] 23 [22-00] 127 

64 bit (Double Precision) 1 [63] 11 [62-52] 52 [51-00] 1023 
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Try it! 
Try your best to do it manually 

Solve Operation Binary Result 

¬01010010 NOT(¬) 

00000001●11111110 AND(●) 

00000001+11111110 OR(+) 

10101010⊕10101011 XOR(⊕) 

-5 Using 2’s Complement 
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